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An expansion, of the type considered by Hassitt, of the Young operators of S,,, in terms of the
two-sided products of the Young operators of S, into the transposition P, ,,,, is derived in com-
plete generality and explicitly evaluated for the symmetry type of the general Wigner nuclear

Y B \

> supermultiplet. The expansion allows of a recursive construction of the Young operators which is
§ b simpler than that considered, for example, by Thrall. A complete set of Young operators for
@) = Sa, Sy S5 and Sy is explicitly constructed and tabulated. In an appendix explicit formulae are
e 5 given for the most general case.
= O
E O 1. DEFINITIONS AND NOTATION

%0

The Young operators of,. ,, of the symmetric group S, are defined in terms of the irreducible
orthogonal matrix representations of the group by (Young 19o0—35)

obosw = (14D ZL@)| P|(2)) P, (1-1)
where the summation is over all the 4! permutations P of S,. Here
(@) P[(@)) =L@ P~ |(x)) (1-2)
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28 H. A. JAHN ON THE

denotes the matrix element of P in the irreducible orthogonal representation R? charac-
terized by the regular partition p of 4

p=1D1botils 1x=p= . =P Dbyt D=4, (1-3)
to which corresponds a Young tableau with £ rows. An alternative notation for the same
partition p=[(pO)e (p@)k ... (p)hn], klp(l)_[_kzp(Z)_l__..J‘_knp(n) =4, (1-4)

PV PP > o> pW kAt k. k= k, (1:5)

uses exponents £, (r =1,2,...,n) in the usual way to denote repetition of the partition
numbers. 7 is the number of different row lengths in the tableau. The partition p need not
appear explicitly in the notation for the matrix elements because it is implicit in the row
and column labels («) and (v). Each of these labels takes on f# distinct values, /? being the
dimension (number of rows in the square matrices) of the representation R?. As is well
known, the labels () may be put into one-to-one correspondence with the f# standard
allowed arrangements of the 4 integers 1,2, ..., 4 in the Young tableau p and hence may
be described by Yamanouchi symbols (Jahn 1951)

() = gty ..ouy_yuy, (1-6)

with 4, (B = 1,2, ..., 4) equal to thenumber of the row of the tableau in which the number B
occurs in the given standard arrangement ().

Since the number 4 must occur at the end of a row and at the bottom of a column in the
Young tableau p, it follows that there are just # possible values for the row number u,, namely

ug =k k... +k (r=1,2,..,n), (1-7)

L.e. there are n distinct rows of the Young tableau p for which the last square may be removed
leaving a regular Young tableau with 4—1 squares. We denote the corresponding irre-
ducible orthogonal representation of S, ; and its dimension respectively by

R, P (s=ki+ky+...Fksr=1,2...,n), (1-8)

a typieal Yamanouchi symbol for this representation being
(@) = uyuy...ugy, (1-9)
such that (u") s = (u) (1-10)

is a Yamanouchi symbol of R?. From a well known property of the representations of the
symmetric group it follows that (Weyl 1946)

2fE =" (1-11)

Considering now the process of adding one square to the Young tableau p to obtain a
regular Young tableau with 41 squares containing p as a constituent, i.e. the process of
adding the row number u,,, to the Yamanouchi symbol (x) of S,

(@) gy = wytty . tgt g4, (1-12)
we see that there are just -1 possible values for the row number u,,, namely

Ugoy = ko +hyHhy ok (r=0,1,2,..,n; k= 1). (1-13)
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 29

We denote the corresponding irreducible orthogonal representation of S, ; and its dimen-
sion respectively by

R, f0t (8= kgt ky k. 4k r=0,1,2,...,n; kg =1). (1-14)
Another well known property of the representations of the symmetric group then finds
expression in the equation (Weyl 1946)

2 f= (A1) 17 (1-15)

The non-vanishing matrix elements of P, ,,, in the representations R? of S, , are given
by (Young 1900-3 5)

w') st| Py g4y |(0) sty = 18, (1-16)
((u st Py an1 [(w') ts) = {(«) ts] Py 41 |(w') st)
={1—-()% (s=+19), (1-17)
where 1/r8t = alf = p,+1—p,+s5—1, (1-18)

a?! being the Young axial distance from the added last square in row £ to the last square of
row s in the Young tableau p. We see that 74 is positive if s > ¢, negative if s < ¢ and that

= L. (1-19)

2. THE TRANSFORMATION AND DIRECT VERIFICATION OF ITS ORTHOGONALITY

Our aim js to establish the following expansion of the Young operators of S, in terms
of the Young operators of §, and the single transposition £ ,.;:

{(A + l)f‘btlfpt}% oft )t (ws o&’)s, (@)s (Afl"/fl’)%PA’ A+10g'§t;(w) (t =+ 5)) (2'1)
{(A+0) 2123 olbysion = LP{(A+1) 1231 ol 0

Afpifp ¥ Af\E ,
+ZT”{(A+]1)]E~]‘P)} 0&?;@%(—‘};‘) Py 103w (2°2)

and to show, moreover, that (2-2) has the form of an orthogonal transformation. In both
(2-1) and (2-2) p’ is a partition of A—1 and (') is any Yamanouchi symbol of the corre-
sponding representation R#’ of S,_, (the fact that (v") in the two Young operators on either
side of P, ,,, is arbitrary is due to the fact that P, ,,; commutes with the permutations
of 8, ;). In (21) (x) is a Yamanouchi symbol of the representation R* of §, and (w)
is a Yamanouchi symbol of a different representation R, s = ¢, of S;. In (2:2) (x) and ()
are possibly different Yamanouchi symbols belonging to one and the same representation
R? of S,. The numerical factor {4f?’ [f?}* is inserted in front of P, ,,; in connexion with
the orthogonality and has the effect of normalizing the two-sided product operators. In
(2-2) since R#'s = RP, p’ varies with s in the summation; in (2-1) we also have R?'s = R
but R#"* = R+ R?.

In order to exhibit (2-2) as an orthogonal transformation we define for given p, («) and
(v) the n+1 operators

t(pa (u) (7))) - {(A‘*“l)f‘b[fpt}% o(u)t ()14 (t = k0+kl+'+kr: r= 0) 1) -'-:n; kO :l) (2'3)
and the n operators

T;(p: (u)> (v)) = 0&);(1}')3‘ (Aﬂ/fﬁ)%PA,A+log")s,(v) (5 = k1+k2+ -!-k,,; T = 1: 2’ veey n) (2'4)
4-2
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30 H. A. JAHN ON THE
and may then present (2-2) in the form
0,(4> () (v)) = hiofos w+ 2 4 Ts(4> () (v),
with an (n+-1)-rowed square matrix of coefficients
oh = [/"{(4+1)/10,
of = i [Af* o {(A+1) (f) 3]

The normalization condition

()2 +3 (eh)? =1
requires S ()22 = fo{(A+ 1) fr—foR/(Af#).

To establish (2-9) we show below that
(r§)? = 1= (A1) fFS2[(AfPS2) (s + 1),

(2:5)

(2:6)
(27)

(2:8)

(2:9)

(2-10)

where f#' is zero when the corresponding partition of 4 is not an allowed one. This gives

S (H)2f2 = f0+ 3 S A+ DA 3 1

and (2-9) follows from the standard relations

SR=ft S =

To prove (2:10) we start from the dimension formula (Weyl 1946)
St =AIDt[(m\my! . .om), m.=p.+k—r (r=12,..,

k
where D? = D(my,my, ...,m;) = 1 (m,—m,).

r<s

From (2-13) we deduce, for the case ¢+ k1,
(A4-0) fef2[(AfPfY) = DiDr[(DPDY),
where, taking the case s < ¢,

Dt = D(my,my, ...,m;—1,...,m+1,...,m,),

Dt = D(my,mgy ...ymyyocymyy ..., my),
Dt —= D(my,my, ...,mgy...,m+1,...,m),

Dt = D(my,mgy...yme—1,...ym,, ..., my).
It follows

(A1) fESP(AfPSE) = (my—1—m,—1) (mg—m,)|(m,—m,—

= {(my—m,—1)2—1}/(m;—m,—1)?

= {(at?—1}(at),

since the Young axial distance a# is given by

atf = p+1—p+s—t=m+1—m,

(2:11)

(2:12)

(2-13)

(2:14)

(2:154)

(2:164)
(2:17)
(2-184a)
(2-19)

1—m,)

(2:20a)

(2-21)
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 31

Since only the square of the axial distance enters into (2-20) it is clear that this relation
holds also in the case s > ¢. Thus

(A+1) /2 ) (AfP ) = 11/ (ak)?

()2 (s+0), (2:22)
establishing (2-10) for the case ¢+ %-+1. For the case t=£k+1 we find

(A1) foE41 FO](AfPEAL f2) = (m,+1) DEH DR DPRIDE)  (2150)

= (m;+1) (m,—1) m3, (2-208)

since

Dorl = D(my+1,my+1, ...ymgy o..ymy+1,1) = D(my,my, ...,m;—1,...,m,0) (2:16b)

and
Dokl = D(my+1,my+1,...,m+1,...om +1,1) = D(my,my, ...,mg, ...,m, 0).  (2:185)

It follows, by (2:30) below, that (2-10) is universally valid. Since 7%} is positive or negative
according as s is greater or less than £, we deduce further

=+ [1—(A+1) 24 (s> 1), (2-23)
= —[1—(A+1) B /(AP0 (s <), (2-24)

where f?! is zero if the corresponding partition of 4 is not allowed.
The normalization condition for the column of coefficients ¢4, follows immediately from

(19 3 () = S/HAT DS =1 (2:25)
Using the expression (2-10) for (+£})2 and the relations

S (A1) o= S S = A=, (2:26)

we find also
; (ch)? = Afrsfe{(A+1) (fO) B+ A {(A+1) fr—fr3{(d+1) (f2)—(4fF =D [f* = 1,
(2‘27)

establishing the normalization condition for the column of coeflicients ¢ also. The ortho-
gonality of the first column of coeflicients with the remaining columns requires

2 cheh =0 =2 ri f*" | (2-28)
t 4
To establish this relation we write it in the form
0 fp,k+l/ap k+l+ z fpl/a (2.29)
t+k+1
with abl =m—m+1, abfFl=1—p +s—(k+1) =—m,. (2-30)

Since then from (1-15) we have

SOl = (A4 1)fp_ fl)l (2-31)
it follows (2-28) is established if we show

@+1)f? = 3 (m+1)f%/(m+1-m,) (2:32)
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32 H. A. JAHN ON THE

is valid for all values of 5. Using the dimension formula (2:13) it may be seen that this is
equivalent to showing that

k
D(my, my, ..., my) = gl D(my,my, ...;my_y,my+1,my, ., ...,my)[(m+1—m) (2-33)

is valid for s = 1,2, ..., k. The validity of this set of £ linear relations between alternating
functions follows, however, from Cauchy’s lemma (Weyl 1946)

det|1/(q,—b,)| = D(ay, g, ..., a) D(by, by, ...,bk)/{ﬁ I (0—0)] (5t=1,2..,8),
s=11t=1
(2-34)

for it is well known (Scott & Mathews 1904), and easily verified, that it follows from this
lemma that the solution of the £ linear equations

Sula—b) =1 (s=1,2...8), (2:35)

k t—1
is given by 3, = 1I (a2, /|
r=1
Hence putting

k
Il (6-a)(@-a)| (t=12...k). (2:36)
i=1 j=i+1

a=m+1, b, =m, y,=D(m,my..,m+1,..,m)/D(m,m,y,..,m), (2:37)
the relations (2-33) are equivalent to

D(my,my, ...,m,_y,m+1,m,q,...,my)[D(my,my, ...,m)
-1 k -1 &
= I 11 (4 1=m) (m+-1—m) [{IT 11 (m—m) (m—m;)}. ~(2:35)
i=1 j=
the truth of which follows at once from the definition of the alternating function. Thus
(2-33) and hence (2-28) has been proved.
To complete the direct proof of the orthogonality of the transformation (2-5) we have to

show also that
Et:cfl,c{z, =0 = ;rfl’,rg’z‘,ff” for s =& 5, (2-39)

Treating this in the same manner as (2-28) we find this requires
k
(A+1)f7 = 3 JP1—mgmg[{(m—my, +1) (m—mg, +1)], (2-40)
=1
equivalent, through the dimension formula, to the algebraic identity

k
D(my, ...,m;) = z=zl D(my, ...,m+1, ...,my) (m,+1—mg,—mg) [{(m~41—m) (m,+1—mg)}
(2-41)
between alternating functions, to be shown valid for s, # s, and 5,5, = 1,2, ..., k. In fact,
the partial fraction equality, for s; == s,

1{(m A 1 —=m,) (my4-1—my,)} = {1/ (my—mg, +1) = 1/ (my—my, 4-1)}/ (mg, —my,),  (242)
enables us to write (2-41) in the form
D(my,mg, ...,my)

m 1

=2l sl
=1 Lm+1—mg, my—mg,\m—mg+1 m—mg,+1

2

:'D(ml, ey 1, ey my),  (2043)


http://rsta.royalsocietypublishing.org/

s |
PN

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 33

and the truth of this is apparent from (2:33). Hence (2-39) has been established and com-
bining this with the normalization relation we have thus shown that

2 15 P = 0(s1,85) (A+1) (F9)*/(AF5)- (2-44)

The above proof of the orthonormality of the columns of coefficients in (2-5) establishes
at the same time the orthonormality of the rows of coefficients, so that we have also shown

that
i, b, Z e 05, = 0(t, 1), (2-45)
which is equivalent to the relation

ot f = =t [A+8(4, 1) (A1) (f)%/(4f?). (2-46)

S

3. THE INVERSE TRANSFORMATION

The orthogonality, which has just been established, of the matrix of coefficients in (2-5),
enables us to present the inverse relation in the form

obi; ) = Zt:cgtol(p? (), (v)), (3:1)

(5, (), () = Zei0(#> (w), (), (3-2)

from which follow : oy = z o84t s (3-3)
ofn;w1s Pa, a+10b0s50 = E L 0bt; s (3-4)

to which we may add, from (2-1),

ol s P, a+1%0h ) = {(A+1) 2 S| (Af*f?) )} 0fs; s
={1— ()N ol s (s 1), (3:5)
where we have made use of (2:10). When we insert the matrix elements of P; ., from (1-16),
(1-17) these take the form

Og)s;(v’)sPA, A+1 Og;zt)t;(w) = ((v,) St‘ PA, A+1 ‘ (v,) tS) oj(bu,)slt; (w)s (5 =+ t): (3°6)

0 u,)s;(v’)sPA, A+1 0{5’%;@) = ; <(v,) Sti PA, A4+1 l (,v,) St) ogt,)sll; (v)ts (3'7)

to which we add again oby. ) = 2 0bhi e (3:8)
t

The orthogonality proof of § 2 shows that a proof of (3-6), (3:7) and (3-8) is a proof also of
equations (2-1) and (2-2). We proceed now to a direct proof of these inverse equations.
The relation reciprocal to ( 1-1) is

2 (@) P(v))ohy;ws (3-9)

p@) ()

where Pis any permutation of §, and the summation is a double sum over all the Yamanouchi
symbols of each representation R? of §,. Taking into account the complete set of non-
vanishing matrix elements of P, ,., given in (1-16) and (1-17) we deduce that

Py g1 = Z ((U ) st| PA ar1 | (V) SEY O34y s+ (UE) t((”,) st| PA,A+1 I(”,) 18 0l Sk sy (3°10)

s*t
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34 H. A. JAHN ON THE

where the summation is over all allowed partitions p’ of S,_;, all allowed Yamanouchi
symbols (v) of R#" and over all row numbers s and ¢ for which addition of a square to row s
and to row ¢ of the Young tableau of R?’ is permitted, addition of two squares to the same
row being excluded from the second sum but not from the first. Applying (3-9) to the iden-

tlty 1 we deduce also 4 _‘p (Z) 0 v)st W)st — Z (v)t (1A (311)
v

Inserting (3-10) into (3:6) we have then, with s = ¢,

0t wns P, av1085 ) = 5 Z t((vll) 51| Py, 411 |(v1) $11) 0850150 v%ftv?h;(v{)sltnov,'t)t;(w)
W\ s1h
er (2): t((vl sty Py, gr [(V1) 8151 085 s OB ot O s are (3°12)
1(V)) sy
sl

Now the Young operators of S, have the properties (see Note at end of this paragraph)

0bi; 9% = 0(8, ) 8((v), (1)) 0fy; 525 (3:13)
0bhs; wn = 0883 088 s; n = Obbs; 19p; o (3-14)
where (x) is any Yamanouchi symbol of R?* and (y) any Yamanouchi symbol of R?. It
follows that 0{;’5‘; @)s ogiiff}flll;(v{)s,tl o&iﬁt;(w), (3'15)

involving the factors (s, s), 0(s, ¢) is zero for s == ¢, whilst
O{Zf; @)s ogji)s;fltl;(vi)t.s,o vl't)t;(w) = 8(10,1’10,) 8( (’U;)) (1},)) 5(31,.5‘) g(tb t) 0 L;ftt, (w)s* (3.16)

It follows that for s == ¢

0k, s Pa, 4108500 = (V') 8 Py 411 [(V") 18) ot cnss (3:17)

establishing (3-6).
Inserting (3-10) into (3-7), on the other hand, we find
ol w5 Pa, 441835, = p (Z) (1) 11| By, gir [(V1) $161) 085,15 08555 o snts OB s
1(v) sl
+1, (UZ t((”l) it By, aer [(01) 1500 065, ans 08855 ot 0 Fss - (3°18)
1 =l¢=tfl 1

and we see that the last sum now vanishes since it is restricted to s, = ¢, whilst the product
of the three Young operators in each term of the sum involves the factors 0(s1,8), 0(ty,5).

The product of the three Young operators in the first sum is

0835 s ObIAE s st O3ss o = 001, 07) 0((v1),5 (v7)) O(sy, ) OB5E (s, (3:19)

It follows 0o )SPA 44108500 = Z ((v') st| P, A4, A+1 |(v") $t) oft ows (3-20)
which establishes (3-7).
Finally, multiplying both sides of (3-11) by of,., we have

o= 2 0 u);(u)"ﬁ'.)til;@,)t. (3'21)
st
and the product of the Young operators on the right-hand side is
0b; 9t wne = 0(L1s£) (1) () 0fSs; s (3-22)
consequently 0w ) = ;2 0bt; s (3-23)

establishing (3-8).
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 35

With this direct proof of the inverse equations we have established also, through the
proofs of § 2, the transformations (2-1), (2-2) between the Young operators of S,,, and the
two-sided products of the Young operators of S, with P, ,,,. A direct proof of the trans-
formations (2-1), (2-2) is given in the next section.

Note
Relation (3-138) is a standard property of Young operators. (3-14) is established as
follows. I ot = {(A+1)F 3 ()| P|0) P, (324
we write P=RQ, (3-25)
where R runs over the elements of S, and
Q=1 B ,, (J=12..4). (3-26)
Then o= UP(A+DY 3 ()5l RIED Q1) & RQ
= {74+ 2 EA@IRI)RK(2) 5] Q1) 5 Q
= LR+ DS 3 ofdtad(2) 1 (1)) Q- - (327)
Ttfollows  offiaoflun = LA+ 12 3 ol d(2)5] Q|(0) 0
= 0fs; e (3-28)
The relation 08ks 98, ) = 0Lss; (3-29)

follows in a similar manner from

ofsin = [/ RSP (A+1)}] Q%})((U) 5| @ [(w) ) @ oy, (3-30)

which is established in the same way.

4. DIRECT DERIVATION OF THE TRANSFORMATION

The method of deriving relations (2-1), (2-2) given in § 3 is indirect since it involves the
orthogonality verification of §2. A direct proof (which was the one used in the original
derivation) is as follows. Making use of the relations

{(A+1) 2 o) (A = (1 — ()2 = ((0") t| Py ain (V) 8D (s 8),  (41)
rhi = ((v") st| Py 41 |(v") st, (42)

we may write equations (2-1), (2-2) in the form
{(A+2) 12117 ol s = (ASELS) () 5t| Py, g1 | (V) 85) 05 ns Pt a106000 (5 1)s (4°3)
(A1) L2125 0ffin = obso+ 2 (ALY W) st By, 411 | (0) 58) 05 P, 4 0o (414)
We see that the two relations can be collected into the single equation
{(A+1)S2[f? o5 = (s, 8) 0 i+ 2 (472 17) () 2t By, 400 | (0) 95)
X 0fy¥wnela, 411985 wr (4:5)

5 Vor. 253. A.
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36 H. A. JAHN ON THE

Here if s == ¢ we must have x¥ = s, y = ¢t and if s = ¢ we must have x = y (and this variable is
denoted by s in (4-4)).
Starting from the definition

bk ws = 1P (A+1) '}E< u) t| R|(v) ) R, (4-6)

where R runs over all the (4+1)! permutations of S, ,, we introduce a coset subdivision
of §, ., with respect to the subgroup S, writing

ot = (HIA+ DY S 30 1 GP0) 9 Q,P, (&7
where Q=~R 411 U=12..,4), Q=1 (4:8)

and P runs over all the permutations of §,. We have then

oo = UPAF D 3 S S (@ QD) P09 QP (49)

Since, however, {w)r| P|(v) sy = 0(r,s5) {(w) [P[(v (4-10)
and 0l = (S7/4Y) Z( )| P (v) (4:11)
where =R, f1= (4-12)
we dCdUCC ou)t s [fp[/{(A+ l fpt}] z z < t[Q |(w S> Q] O?w) () (413)
Since now Q=R 4s1=PuPy41By (J=12,...,4), Py=1I (4-14)
and

() | Baly a1 B, a|(w) s) = EE((H al Y ) 8 Py air [(0) @) Ba | (w))
(]21,2,...,14), P, =1, (4.15)

we deduce
{(A+1) f2UfP5 0l s = (85 8) 0fy; 0
53 (@B WY Py st 10) 59 <@)| Ba | (0)YBsPr g Pt (+16)

j=1 (w) (x)(!/

Now from the standard property

Poliy; = Zo{b w{(®)] P[()) (4-17)
of the Young operators of S, we deduce _
B’Aogw);(v):zogz);(v)<(z)l}}z4|(w)> (J=12,...,4), (4-18)

(2)

and using the orthogonality relation

2 W) B [(w))<(2)| Ba [ (w)y = 9((9), (2) (4:19)
of the representation matrices for the transposition P, we find

{(A_'_ l)fﬁllfpl} ogl)l s — 6(3 t) Ow); )
- Z < (x) t|PA 4+11(®) 5>{ (W] 5 l(x)>PJA} A, 4+100); 0 (4-20)
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 37

Writing now (x) = ()% (y)= )y, (4-21)
so that (x') is a Yamanouchi symbol of the representation

Rt = RY = RY = Rf! (4-22)

and using the fact that
() 2] B, g | (57) g5y = <(0") 8] B, g [ (0) 99, (4-23)
where (v') is any Yamanouchi symbol of R?’, we deduce
{(A4+1) 72073 ol s = (55 2) 0firs 0 )
+x§y;<(v,) Xt Py a4y (V) y8) X 1<(u)| By |(x) 2) Ba By 411080y (4°24)

) j=
where the matrix element of P, ,,, has been taken out of the sum over (x'). Writing then
0fory @ = Ory; )03y > (4-25)
we have, since o), commutes with P, ,,,,

(A1) 2 e = 805, ofoio + ZC(0) | By g |(0) 9
xy
A
X (Z) ,Zl<(u)|[},4 [(x") %) Byoli,wn | Pa, 44108300 (4°26)
X) )=

By applying (4-13) to the Young operators of S; we see, however, that

A , , , ,
21 %((”)I}}A |(x) %) B g0fry; 00 = (AF?'[f27%) 06 s (4-27)
Jj=1(
It follows that

{(A4-1) 25 08 s = (85 8) ;0
+ 3 (AfF[f2%) (V') %8| By, g1 [ (V') 45D 0l rneBa, a+1083ys 00 (4°28)
xy

which agrees with (4-5) since, from (4-22), we have

S =1t =St (4-29)

Thus formulae (2-1) and (2-2) have been given a direct derivation.

5. CONNEXION WITH NORMALIZED COSET COEFFICIENTS
If we define ‘normalized’ Young operators [0f}, .).] (Jahn 1954) for S,,, by

. [ogtl)t;(v)s] = {(A + 1) !/j‘pt}% 0 ut)l;(v)s, ' (5'1)
then the two reciprocal relations
0 ut)t;(v)s = {fpl/(A_}_ 1) '} % <(u) t‘ R | (U) S) R’ (52)
R= > ()t R|(v)$)0f;ws (5:3)
pit (v)s

between the (4+1)! permutations R of S, and the Y (f#)? = (A+1)! Young operators
pt :

O{I)lt)t;(v)s of SA+1 take the form

(065 5] = 2 [(w) {| R|(v) 5] R, (54)
R= z [(u) tl R I(U) .S‘] [O&t)t;(v)s]’ (5°5)

bt ()s
5-2
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38 H. A. JAHN ON THE
with the same ‘normalized’ representation coefficients

[(w) | R|(8) s] = {f%/(A+ 1)1} 4 R|(v) ), (5-6)
occurring in the two reciprocal relations. It follows that these normalized representation

coeflicients, as is also well known from general representation theory, define an (44-1)!-
rowed square orthogonal matrix satisfying the orthonormality relations

I’(u%v)s [(u) t! R I( S] [ tl S| 5] = 3(R S)
={1/(4+1)}} Z S (u) t] R|(v) s)y{(w) ¢| S|(v) s), (5°7)

P (0)s
2 [(w) {] R[(v) s] [(w) 2| R|(x) y] = 0((u), (w)) 8(2,2) 8((v), (x)) (s, ¥)
’ = (A DB 3@ 4 RI(0) () 2 R|(3)9). (59)
If we introduce the coset decomposition of S, ; with respect to the subgroup S,, writing
R=TP (j=1,2,...,4+1), T, =1, (5-9)

R being an element of $,,;, P an element of §,, 7; a selected element in the jth coset (the
(j+1)th coset is the subgroup S, itself), we deduce from (5-8) (with s and ¢ interchanged),

8((1), (1)) 8((01), (2)) D(sr5) (1, )
:UMM+UW§z«wﬂ P|(0) () 51| TP |(07) 1)

= {/*(4+1)1} Z W ) 5| T [(w) £y {(wr) 51| T | (wy) 21)
* 2L @) Pl@)) ()| P[(v)),  (510)

where (v) and (w) are Yamanouchi symbols of the representation R? of S,. Since, however,
from (5-8) applied to S,, we have

2 (@) PI@)) () [ P (o)) = (ALf?) (1), () 8((21), (v)), (5-11)

we deduce

2 Z [PR(A+ 1S3 () s| T [ (w) 8 () 511 T | (w) 1) = 8((wr), (w)) (51, 5) (21, 8).

(w) j=
" (512)
Defining ‘normalized’ coset coeflicients by
[(w) 5| T; |(w) £] = [/#'{(A+1) f231* () 5| T; | (w
- Ct(u)s;j(w), (5'13)
we may express (5:12) in the form
Z E Cllasi i s, jor = 0815 2) 8((wy), (w)) (sy, 5), (5-14)

j=1 (w)

where (w) is a Yamanouchi symbol of R?, (u) a Yamanouchi symbol of R#’. Since, for given
b, the indices ¢, (u), s take on Y f#! distinct values, whilst the indices j, (w) take on (4+-1) f*
t

distinct values and since, from (1-15),

pEfpt: (A+1) /7, (515)
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 39

it follows, from (5-14), that the coefficients C%,, ., form a square orthogonal matrix
with (4+1) f? rows. Itis easily seen that the orthogonality relation for the columns

> Clusijw Clwsiko = 2 [(@)s| T |(w) ] [(w) s| T4 | (v) £]

t(w)s

Hu)s
(p fixed) (p fixed)

= 2 PRAED( )s| T5 [(w) & (u) s| Ty | (v) ) = 8(j, k) 0((w), (v)),  (516)

is consistent with the relation

S S 5| T3 () 4| Tl (w) &) = (A+1)1005:R), (517)

which follows from (5-7). For (5-16) with (v) = (w), summed over the f? values of (w), gives

ST ) @A T ) 6 = (44D (2060 (519
(p fixed)
and (5-17) follows since > (fr)2= AL (5-19)
P ,

The coset operator expansion (4-13), written in the form

ofhs;n = LAP{(A+1) /%] Z 2 @) s| T [(w) &) Tiofs (5-20)
may hence be expressed as
4+1
{(A + l)fp[fpt}% ng)s HO A Zl (2:) Cﬁu)s;j(w)Y}O&);(v): (5'21)
Jj=1 (w,

showing that the numerical factor on the left-hand side is what is required to make the
operator a normalized combination of coset operators. Since

Chussjor = LPH(A+1) 21 (u) 5| T; [ (w) 8, (5-22)
it follows, from 7., = I, that
Chas: a1 = [FPH(A+1) f231F 8((w), (w)) &(s, 2)

. . = c§,0((u), (w)) 8(s, £), (5-23)
with ¢4, as in (2-6).
Thusa for s =+ ta {(A_I_ l)fp[fpl}% 0 u)s it = Z Z C{}(u)s J(w)To{:u) )2 (5'24)
. ji=1 (w)
whilst for s = # we find
{(A41) f21f5% 0fhy. o = chioby, o+ Z Z Clots jon L3 08y; e (5-25)
'

Comparison with (2-1) and (2-2) written in the form
{(4+1 fp/fpl}%oui)s-(v)t = o3 wn (AS2[ IV P 4, 411900 (L), (5-26)
{(A+1)S2[fPF offy, o = chuoby; o+ 2 chiobosans (ASELP)E Py, gy 0bnss o (5-27)
thus requires S
bt won (ALY Py, g 0bnsir = Z Z s jr ol (8 1), (5-28)

j" w

z (u) @)s (Afl)/fp) A, A+1 O(b s @) T Zl (Z) C{}(u)l;j(w) 7;'0{1)0);(1))' (5'29)
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40 H. A. JAHN ON THE
Multiplying both sides of (5:29) by ¢£,, summing over ¢ and using the column orthogonality
relation 3 chet = 3(s,5.), (530)

equation (5-29) becomes, with s, replaced again by s,

oty wns (ASELSOE Py 4i10bs = Z Z kb s T 08 s (5-31)
j=1(w)
Where kﬁu) sJjw) T z t(u)t Jw)* (5'32)

Equations (5-28), (5:31) express the two-sided products of the Young operators of S,
with P, ,., as linear combinations of proper (i.e. coset S, not included) coset operators.
We may show directly that the numerical factor (A4f?/f#)* is what is required to normalize
these combinations. This is of course already clear in the case of (5-28) since for s 3= ¢

zl 2 (Cgu)s j(w)) = 1. (5'33)
Jj (w)
If we take, with 7, , = I, Ty =P 411 (5-34)

so that the Ath coset is defined to contain P, ,,, then the coeflicient of P, ;.10 on
the right-hand side of (5-28) is, with s = ¢,
Chas: awns = LIPHA+1) 1K () | Py ain | () 8

= 8((w), (v) &) [SPH(A+1)SPHECW) ts] By, ga [ (01) 52

= 8((w), (') ) [f{(A+1) P11 — ()

= 0((w), (') ) L/ H(A+ 1) S {(A+1) [ 2 (Affe) 1

= 8((w), (v") &) {S2/(Af2)}. (5-35)
Thus c(llz;'t)t;(v’)t (Aﬂp/]?t)%&, 4+10)s;0) = {ﬂt/(Afsp)}%PA,A+105’)s;(v)+---- (5'36)
It follows, by Englefield’s theorem (1956) on the normalization of expressions symmetrized
by Young operators, that (4f2/f?")* is the factor required to normalize

ov”)tt;(v’)tPA,A+log’)s;(v) (‘f =+ t) (5'37)
and that the same factor normalizes all the expressions
ol P, 41180550 (5-38)

In the case of (5-31) the coefficient of Py .04y, on the right-hand side is
Hlsaws = 3 el aons
= gcﬁ LF#H(A+ 1) SPHE @) ] By, g | 0) 5t
= 8((w), (v) ) S e [7{(A+1) /7]
= 3((u), (v) ) S [AFPAHA-+D) ()31 (LA ) 2
- 30, 0)9) (421 D CALTHEERIG (5:39)
But from, (44) we have s u(rg2 = (4-+1) (/2)2/(4fP) (540)
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 41

Thus ks s = 8((u), (v') ) {2/ (AfD)}- (5-41)

Hence 0bnsswns (AFELS)E Py, air0bnsio = U/ (AT Py a1 0bnssot - (5-42)

showing again by Englefield’s theorem, that the factor (4/?/f#)* normalizes all the expres-

sions 0fy; wrs Pa, 411905 0 (5-43)

It follows 21 > (kb jw)? = 1. (5-44)
i=1 0w

Equation (5-44), included in the more general relation
Zl 2 ks(u) ](w)ks|(u|) sjw) T 3(51> ) 3((”1)3 (u)>) (5'45>
ji=1(w)
may be verified directly from (5-32), (5-14) and (5-23) using the orthogonality relations
2 chehy = 0(sy,5), 2 ek =0. (5-46)
C i
For we have

A
z Z ks(u) J(w)ksl(m) s jaw) — Z Z Z z Cst s.t. t(u)t Jw) Ctl(ul)t. 3 J(w)

i=1 (w) ji=l( t &

- Cftcfltl{a\(tl’ ( ) (u)) (Z)Cilzu)t;A+l(w)Cn(u1)tl A+l(w)}
w

it L

=33 > chel, {0ty 8) —chicd} 0((uy), (w)

— (S chet— (S che?}2((w), ()
(e, 8y ) (5-47)

l

{

l

6. EXPLICIT EVALUATION FOR THE CASE OF THE WIGNER NUCLEAR SUPERMULTIPLETS

The permutation symmetry of the charge-spin states of an A-particle nucleus is resticted,
by Pauli’s principle, to representations R? of S, characterized by partitions of 4 into not
more than four parts

[P1P2P3P4]> Pl 2?2 >1’3 2104 0, P1+P2+P3 +P4 = 4. (6'1)

This set of allowed partitions characterize the different Wigner (1937) supermultiplets.
Such symmetrized nuclear charge-spin states may be combined only with orbital states of
adjoint symmetry to form totally antisymmetric states. Thus the allowed nuclear orbital
symmetry is described by the set of partitions

p o= [4R13R 2k 1k, 4k + 3ky+ 2k +k, = 4, (6-2)
where ky :ﬁp ko :ﬁS _ﬁp k3 :ﬁz“ﬁsa ky :ﬁl”‘ﬁza (6'3)
151 :k1+k2+k3+k4:k, ﬁ2:k1+k2+k3, ﬁ3:k1+k2, ﬁ4:k1- (6'4)

Since adjoint representations R?, R? of S, have the same dimension, we find, from the
general dimension formula applied to f?

St =[P = A\ DF(m,\ i\ g\ 7,Y), i, = f,+4—, (6-5)
where D? = D(fiy, iy, g, iy) = D(f)+3, fy+2, fs+1, §,). (6-6)
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42 H. A. JAHN ON THE

It follows

o Al (ky+1) (k3+1) (hy+1) (ky+ky+2) (R3-+ky+2) (ky+hs+Ey+3) (67)
Ty (gt oyt 1) (kg oy Ty +2) 1 (kg +hey b oy -y +3) 1 '

Since 7, the number of distinct row lengths in the Young tableau of p, cannot exceed 4,
we have at the most a 5-rowed square matrix of coefficients ¢, £, where the row with ¢ = 1,
which will be given to complete the orthogonal matrix, will be of no physical interest.
When the row number ¢ of the added square has the value

t=ki+k+...+k+1 (r=1,2,8), (6-8)

we obtain the dimension f?* of the corresponding representation from formula (6-7) by
means of the substitutions

A-A+1, k.—k+1, k., —k,—1 (r=1,23). (6-9)
For the case b=k +ky+ks+k+1=Fk+1 (6:10)
(added square at the bottom of the tableau) we substitute simply
4—-A+1, k,—k,+1. : (6-11)
We find in this way the following formulae for the coefficients

o= [fPA+F) ], ¢ =k thybo bk (r=1,2,3,4). (6:12)

cb :{ kz(k2+k3+l) (k2+k3+k4+2) }% (6'13)
ORELT (k1) (Ry4-1) (ky+Es+2) (ky+ks+ky+3)) 2
st = | hy(ky +2) (hy k1) f (614)
T (k1) (R 1) (B bRy +-2) (Ry Ay 12)) 2
o _ { ky(ks+2) (ky-+ks+3) }% (6-15)
OR=ktl (kg +1) (ky+1) (ky+ks+2) (k) +ky+ks+3)) °
hes — | (ky+2) (kg +ky+3) (ky+ Kyt Fyt-4) } (616)
A (kﬁ‘l) (ks+ky+-2) (k2+k3 +ky+3) (k1+k2+k3+k4+4)

The coefficient ¢4, required to complete the column of coeflicients satisfying the normaliza-

tion condition
2 (ch)? =1, (6:17)

involving an adjoint partition of 4 into five parts, may be calculated in a similar manner
from the general dimension formula. We find

- 2 k 1
4 :{ ky(ky+ky 1) (ki +ky+ky+2) (k) +ky+hy+ K4+ 3) )} . (6-18)

(ky+1) (ky+ky+2) (ky+hy+ ks +3) (B +hy ks +ky+4

From (2-7) we have

cby = i LA+ 1) (A3

= rifchchs, (6:19)

where off = {f2/(A4f? )}% (6-20)
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. 1 43
may be evaluated, for s = &, +£,+...+£4, (r = 1,2, 3) from
c‘(l)}t = [fpt/{(A+1)fp}]%, t=1 ""k “I_k + ... —I—/C,. (r = 1,2, 3) (6'21)
by the substitution k,—~>k—1, k., >k  +1, (6-22)
and for s = £ from ¢4 ;. , by the substitution
ky—>k,—1. (6-23)
Hence we deduce from (6-13) to (6-16) that
k—+n(k+k-+m( +k+%—+m 5
p/k, — PI(A ( 3 2 3 4 } .
ky+1) (k, +1) (ks +k +2) H
plltks — { fp)( — (ks )
Co, ={//(Aff i)} {kz (ks+2) (k + kot 1) (ks + Ky +3)} (6-25)
_ k+4 k-+n(k+k-+m ¥
M(kk.)w P/(Afp- :{ 2 : .

(k+1Mk+k+2Mk+k+k4ﬂ)
= - .
ot = LI} *{k4(k3+k411) (R (klikkz:—/cg—l—k4+3)} - (627)

The reciprocal, 7%, of the Young axial distance, occurring in (6-19), is easily deduced from
the corresponding Young tableaus. We give below the 5 x 4 matrix of Young axial distances:

abtt = 1k} = p,4+1—p, 45—t (6-28)

TABLE OF AXIAL DISTANCES af} FOR p = [4%18%22%s 1M (k = k) +ky+-k3+-ky)

] s=k s=Fk +k, s=k—k, s=k
t=1 k, ki+ky+1 k—k,+2 k+3 .
t=1+Fk, -1 ky ky+ky+1 k—ki+2 (6-29)
t=1+k +k, —(ky+2) -1 kg ks+k,+1
t=1+k—k, — (ky+k3+3) ~ (k3 +2) -1 ky
t=14+k —(k—ki+4) — (k3 +k,+3) —(ky+2) -1

When we evaluate ¢4 from (6-19) we find that the factor from a#} always cancels, leaving
only the sign. We find in this way the complete set of ¢ coeflicients for p = [4F13%22ks 14]
given below, where again we have put £ = k, +£,+k;+-£,.

f—

t:

(ky+-2) (ky+ky+1) (ky+ky+3) (k—k,+2) (k—k,+4) (k+3) }%
(k1 +-1) (ka+1) (k) +Fky+2) (ky+k3+2) (k—Fky+3) (k—Fk +3) (k+4)
(6-30)

5=k o {

kyky(ky+2) (ky+ky+3) (k—ky+2) (£+3) }%
ky 1) (ky+1) (ks +1) (kKo 1 2) (ks +ky+2) (k—ky+3) (k+4)) 2

s =k, +ky ka1 = {(

(6-31)
s=k—k c? — { kiky(ky+2) (k) +hy+1) (ky+h3+1) (k+3) }%
—Eh o = G G 1) (B ) Ry Ry 2) Ok Ry 2) (F Ry 9) (ET )
(6-32)
K o — { kiky(ki+ky+1) (ks +ky+1) (F—ky+2) (A—F, +2) }%
1= (R L) (B 1) (k) ko +2) (ks +ky+2) (K—ky+3) (k—Fky+3) (k+4)
(6:33)

6 Vor. 253. A.
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44 H. A. JAHN ON THE
t=1+k
sk o ar —— {k1k2(k2+2) (kyt+ks+1) (ky+k3+3) (A—k +2) (k‘*k1+4)}% (6-34)
! vlth (ky+1) (ke +-1)2 (ky+-k3+2)% (A —k,+3)* ’
(ks+2) (ky+hy+1) (kyt+-ky+-1) (ks +k,+3) (k—Kk,+2) !
— b — 3 1 2 2 3 3 4 1 .
s=k+ky R ir1em {(/Cl—l-l) (ky+-1)2 (kg +1) (ky+kg+2) (ks +ky+2) (k—k1+3)} (6-35)
koky(ky+2) (k—Fki+2) (k—ky+2) ¥
— k b _ 2/v3\fiy ) 1 4 .
kb e = ) () (1) (bR 2 R Ty 0 (699
koky(ky+Fks—+1) (ks+k,+1) (k+3) 3
=k P — 2R 4\fp T Iy 3T g .
d Roon =iy G 1) 1) (Ao 2) b o) G e (097
t =14k +k,
s—k B e — _{ kyky(ky+-ks+3) (ks +ky+1) (k—k+4) }%’
TR (ky+1)2 (ks +1) (ki +ky+2) (ky+ks+2) (k3+ky+2) (k—Fk +3)
) (6-38)
1 2 +kg 1+ kit ks (/i2~|—1)2 (k3+1)2 (k1+/€2+2) (k3—l—k4+2)2 ’

(2 () Gkt ) s ket D (Eokit )N g
(b 1) (kg + )2 (ky 1) (y -k +2) (by ks +2) (ks 15y 1 2)) 2

ksky(ky+2) (R—F1+2) (k+3)

S=k—ky S priran = {

—k y - i )
S O veths {(/chrl) (ks 1) (kg +1) (ky -ty 1-2) <k3+k4+2>2(k~k1+3>} » (64])
t—1+k—Fk,
3 Fyky(ky+2) (s +2) (k—Fy +4) b
=k _— 174\ Ry 3 1 .
i=h orsin =~ [T D) (o T e T 2 R TS (42

{ ok by -y 1) by kg +8) (kg -y 1) I (eay

(ko 1) (kg 12 (ky 1) (ko t K+ 2) (Rt +2) (= Ky 5 3)) 2

fikulhs 2) U 2 fy b 1) kbl 9) (b2
(Fs-+ 1)7 (kg 1)2 (kg - 2) (k— Ky + 3) !

S=ki+ky firprin—n,=—

S=k—ky  Rprihr=— (6-44)

o y :{ (ks +2) (y+ky+3) (ks +ky+1) (k—k +2) (E+3) } (6-45)
S o lPh=he 7\ (ky -+ 1) (ky+ 1)2 (ky+- kg +2) (ks +ky+2) (k—ky+3) (k—k,+3) °
t=1+k
. . Fy(ky+2) (kg +2) (ky + ks +3) (ky kg +-3) }% (6-46)
1 Rtk =T (ky 1) (ky+1) (ky kT 2) (ks +hy+2) (k—ky +3)2(k+4)) °

s=k +k o { Rolks +2) (ky+2) (ky+ky+1) (—K +4) :
R Rutke LR ™ (6,00 (By 1) (k +1) (ky+ky+2)% (k—k,+3) (k+4)} ’

(6-47)

¥
s=h=ky = blly Lk 1)y Lhyecd) (kb 2) (b))

(ks + 1) (ky+1)2 (kyt+ks+2) (ky+ky+2) (F—ky+3) (k+4)

4(k4+2 (ks+ky+1) (ks +ky+38) (k—k+2) (k—k,+4) (k—i—3)}
(kg 1)2 (ks + Fy - 2)2 (k—Fy £ 3)2 (T4)

(6-48)

(6-49)
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 45

7. COMPLETE SET OF YOUNG OPERATORS FOR S, S,, S5 AND Sg:
RELATIONS FOR ADJOINT PARTITIONS

The basic equations (2-1), (2-2) give rise to a recursive construction of the Young
operators of S, , , in terms of those of §, which is much simpler than that given, for example,
by Thrall (1941), since only the transpositions P,,, Py, ..., P, 4., need be considered. We
illustrate this and the evaluation of the general formulae of § 6 by an explicit construction
of all the Young operators for S5, Sy, S5 and .

Before we proceed to this tabulation we note first, however, that there is a relation
between the coeflicients ¢4, ¢ for the partition p and those for the partition / adjoint to .
This relation shortens the tabulation and in the case when p is self-adjoint, p = p, leads to
identities between the coefficients of the single partition. If p is a partition, s the row
number of a square labelled s in p and ¢ the row number of the added square labelled ¢,
then by reflecting the Young tableau along the main diagonal, so that p is converted into f,
we see (cf. the diagram below) that the same relative positions of s and ¢ in p are achieved

by putting f—p+1, 5=p, (7-1)
r=t—1, py=s. (7-2)
By this reflexion, however, the axial distance from ¢ to s changes sign. This may be verified
by direct calculation. The axial distance from ¢ to s in § is given by
abl = Pt 1—ps+5—1
= (t—1)+1—s+p,—(p+1)
=—(pt+1—p+s—1)

. t .
= —at}f. (7-3)
P P —
P+ 1 s
P> ~
— Pr+ 1
¢ 5 ]
t
~ 8
s t
s

L1t

Since the dimensions of adjoint representations are equal we have then

JE—pp, fo= o, fE =12, (7-4)
It follows, from (2-6), (2-7) that =l ob=—db, (7-5)
which are the relations in question, holding also when § = .

The above relations have been used below in the tabulation of ¢4, ¢£, for A+1 =3, 4, 5
and 6. The algebraic labels have been retained for s and ¢ to make clear the specialization
required in applying the general formulae of § 6 to cases where some of the exponents
ki, ko k5 and k, are zero. The general formulae have been checked in this way although,
of course, for small 4, where the dimensions of the representations are well known, equa-
tions (2+6) and (2-7) are easy to evaluate directly.

6-2
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46 H. A. JAHN ON THE
A+1=3
=[2], ky=1, k—ky—=k,—=0, k=1.
p=012%, k,=2, k—k,—ks—=0, k=2,

Phrer1 = (1P = s Brorarrr = B = _cgclll-l-l)
o = (3)F = el ket 13 R kkt1 = — () =—dF Akt 1 (7-6)
A+1 =14
p=13], ky=1, ki=ky=k, =0, k=1.
p=11%, k=3, kj=k,=k;=0, k=3.
Coka1 = (71)% = CE){SILA; Gk kit1 = (%)% = —cin;
Cikt1 = (i)% E)lak kot 1> Chbkp kbl = — (i)% = —Cgalg—kﬁl- (7-7)
p=1211=p, ki=ki=1, ki=k,=0, k=2
Rtk = (166)7 = ket O bk = (‘96) = —ci? k]+1,
Cokkyb1 = (4 O ki1 = —(1%)% = — Rkt 15
k1 = — (Tlé)% = —Cjp Kty 10 (7-8)
A+1=5
P =[4], k1:1, ky=ky =k, =0, = 1.
p=11%, k,=4, ki =k,=k;=0, k=4
= B = = (= —d
Cg,“kﬂ = (%)% S k1> Chngrl = — (%‘)% = —65%7!-;@“- (7-9)
p=1[31], ky=k,=1, ki=k,=0, k=2.
p=121%], ky=1, k=2, k =k, =0, k=
@%H~4%)~w%%; Bk k1 = (3B = — 25
Bk = (3% = ey BV kekrr = — (A = —c241 ket 1>
Co Ryt = (%)% = c%%}c1]+kg+l; e k1 = — (%)% = —C}C,kll-l-kg-l-l;
c}fg}c]+l = L)% = _5%21;]4,/:“3
R kyt (i%) = —ci l?m ketls
0[31+1 =—(38) = 'Cgc—lklbkﬁkz-l-l' (7-10)
=[2?%] =p, ky=2, k1:k2:k4:0, k= 2.
Bhimr = B =Bl % kirr = (1) =—c ko k1 (7-11)

A+1=6
p=1[41], ky=k,=1, ky=k,=0, k=2
P=121%], ky—1,k, =3, k —k,=0, k=4

i — (B = oL A = () = —ctkhs
C%)?k]—kﬁl = (?%)% = ¢ k15 c}c,,k—kﬁl = (?)_g)% = —C}c211c]k.,+1>
Coiky1 = (%2)% = 65%};1+k2+19 itk = — (666“)% = — k,]+k2+13

it = (ﬁlé)% = —}? llc]4 k+15
kg1 = (%é)%:"ck k.,,k ket 15

6 .
0%4%]“ =—(3% ) = — ! k4,k1+kz+1 (7'12)
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 47

p=1[32], ky=hk,=1, k,=k,—=0, k=2
p=I[221], ky=2, k=1, k =k, =0, k=3

65‘/5“ = (Fo)¥ = oty Bk = (38)F = — s
cg k,+k2+1 = (%%)% = 05213] ket15 cgc?%-]kg,kl+k2+l (‘%‘%) = “Cgczzkl] Fat15
Cirr1 = (16)2 = cy k1+k2+1: k1 = — (320)% = —ck,kl+k2+l3
ci3 }c4 Ftl T (’335)% = _c}czzk, k+l:
2, R (ﬁ)% = —fk e Fyt15
k1 = — %‘%)% = — i e ka1 (7-13)
p=1[3121=p, k,=1, k=2, ki =k;=0, k=3.
Brhr =GO =Br BV = B ==
653}: ki1 = (38 )% (/‘;C?r/]fzk ketl = (l%) :—C}S}C ~ket15
c}c?‘:}w E+1 = (36)Jé = ““C}cg}c?kl (7-14)
For completeness we add the following, deduced easily from (2-6), (2:7):
aR = B = s = (@ =B, s
= (= s g —— (1= ~} o

From the above list of coefficients ¢f, ¢f, inserted into (2-5) together with the relation
(2-1) we construct below a complete set of Young operators for S, S,, S5 and S;. In tabu-
lating (2-5) we have introduced in the heading of the table, for ease of presentation, the

abbreviations (p; b)Y = 0by, (7-186)
(Aft[fr)t

£ /fp oe 2 A+1> = 0fy;ns (ARU)E Py, 4410800 (7-17)
so that the partition p of 4 on the left of the symbol stands for any Yamanouchi symbol ()
of the representation R? of S, whilst the same partition p on the right of the symbol stands
for any other (and possibly the same) Yamanouchi symbol (v) of the same representation.
The partition p’ of 4—1 stands for any Yamanouchi symbol (v") of R?" = R?. With respect
to the numerical factors (4f?/f#)* occurring in the headings we may note that the sum of
the squares of these for a given table is equal to 4 as a consequence of (1-11)

S (4f2)f7) = A. (7:18)

Similarly in the row labels of the table we use the abbreviation
}l;)t spt = Oglt)t;(v)b (7'19)
it being implied that the same values () and (v) are substituted for p on the left and right
of each symbol in the heading for the row in question. The tabulation has been made more
concise also by use of relation (7-5) which connects Young operators associated with adjoint
partitions, the labels at the bottom of the table to be read in conjunction with the row
labels on the right-hand side of the table. The minus sign arising from (7-5) is incorporated

in the labels at the bottom of the table.
In tabulating (2-1), or (5:26), we use similarly the abbreviations

Aft'|fa\t p
<( fq{ftﬁ)'y I}J’AH = Ou) W (Afp /fq) 4, A+10£)s ) (7’20)
0fss pt = Obis; e (7-21)
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48 H. A. JAHN ON THE

Thus here the partition ¢ of 4 stands for any Yamanouchi symbol (z) of the representation
R? = RF't = RF of §, the partition p’ of 4 —1 for the Yamanouchi symbol (v) of the repre-
sentation R?" = Rf = Rf of §,_,, the partition p of 4 for the Yamanouchi symbol (v) of the
representation R? = R?'s = RS of §,; the so constructed Young operator belongs to the

representation

of S,

RSt — R — Res (5 {)

Young operators for S,
21— 20 1(T.1 . 112 1
0511 = 01311 = §(L+Ppg) s 0l 11y = 012 12 = 3(I—Pyy).

Young operators for Sy

2t Py /
P ey et
D olflen | B (3)? () offls;am
(%)%0%11512 [212 %)% _(%‘)% (%)%0%11]1 11211
y 1715 [1%]) — 2 Py 2
/ sz =09
P =11]
(3)% o2 2! Py
(3) 0[212 e = [2]; 1[1]2; [12]
3\% 211 — 2éP23
(?) Onion; 212 = <[12]; 2 [1] 1; [2]
Young operators for S,
P= iy oo )
(%)%0%}1;[311 (%)% (%)% (%)%0[13}4 [1°14
(%)* o3l 1312 (3)? —(1)? ! (%) ol#h], 1on
RGN HEN) “3%1)34 113
// <[13]. [12]3; [17] /);[1]

p=121 a1y [21]><[21] [212 1; [21]> <[21 §[)2 21]>

(3)* ol3tl1; 12 (%) (%) COk
(3)t o3 ha; 202 (%) —(%)* (%)*
(3)50[211?3 euz | (Tﬁé)% - ('1175)é - (%)%
V=12 p =11
(%) 0{2112] (2111 = S%PM (% ot s “—< 3%})34
[3]; 1[2]2; [21]/7 [1°]; 3[1%] 15 [21]/7

3)%‘P34
[21]; 2[2]1; 3]

(5)F of3lls o0 = (%)} o2l (8)" L5

TN [21]5 1[12] 35 18]

(7-22)

(7-23)

(7-24)

(7-25)

(7-26)

(7-27)

. (7-28)
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Young operators for S,
2P, /
—[4 45
e iy St
(%)%0{‘;’%1;[411 (%;)% Ok (%)%OH:}S 1145
(3)} 0[413; 1412 (%)% “(%)% ("2‘) ofthl i
14]; [1# —2P,
VP gy e o)
<:i?£§j; (&) P, (&)}
= b= ([31]; [31]) <[31] 2 21]1; [31]> <[31 ! 31]>
SE Ol | @) @)’ (z%) |
;‘55 O ol | (3D -3 (39} () offibhys o
T 0O (%) o3t sus (1) — (%)} — (3%} (& )’43%91 (212
=w
_ ([217]; [217%]) (PP —($)*P, _
32 / (o st s 01 72g) 220
Ef:’ » (7-30
i _ 2105
25° = g iz (o) 121)
Eé (32) o33, o (3)? (3t
(%)% offeld; rams | (3)? —(3)? (7-31)
P =1[3] p = [1°]
2P, 9
(%)%0%311%;[31]1 = [4]; 1 [3]4; [31]/° (lf‘ )? offhi; 214 = <[14] 4[13] 1 [212]>§
Hip '
(%)%O%Humz = <[31]; 32[3]4‘;; [4]/° (% of3tds; o = <[212] 13[13] 4; [14]>
= [21] (7-32)
‘ tp 3 P
< 0 oo = (pgny, Tl s O s = (g, Wor . o)
> , 2P, . 2P,
§ E (%) ¥ ol 312 = <[22] 2 [21351 [31] (%5 offildsonmz = <[22] 2[21;53 [212]
2 = (32)% o3t oo = ()" By s (&) o3l sns = ()P
= [31]; 1[21] 3; [217] ' [212]; 3[21]1; [31]
7-33
E 8 Young operators for S 53)
22 p=I5] (gl oy
%S — [5]; [51> \[5]; [4]1; [5]
8;’6 (6) ofSi; s (%)% (%)% (%)%0[1516 1116
§§ (6)%0[512 (512 (%)% _(%)% (%) ottht, e
T 15]; [15 —5t P,
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50 H. A. JAHN ON THE
(15 g % /
= [41 ( > )
[ ] ([41] l]) [41] [31] 1 [41] [41 [ ] 41] //
(2_54‘)% of3H; ran (%%)% (;—2)% (6@)% (‘34‘)% 0%1315 [21%15
(2—645)%03%}2;[41]2 - (%%)% —(%%)% (%%)% - ("264)%0%13]]2 [21%2
(%%)%0{3%?3 14113 (%%)% ﬁ(@%)% ~(%%)% (%)%0%51 (21°11
([21%]; [21%]) (15t P (3)} Py g
/ (o ot 4521y o VT ovy) A= 20
(7'35)
_ 2t P, /
r=132 s sy pos s o) oot (o1 32y
(9*0) of3311; 3211 (3396)% (%%‘)% i (§36>% (% ) 0[22114 [22114
(??To)f 0%32]12;[3212 (§5ﬁ)% —(%)% l (%%)% (T) 0[22113 122113
(%’Q)%‘)fg%]lsl;[szls (%3) *(ﬁzﬁﬁ —(%%)% @_0) oB3E 22m
/- ([2%1]; [221]) —2t Py, —3t Py o2
/ (e 225 [221]><[221] [217] 2; [221] p= 121,
(7'36)
2 P
_ 2 56 3)
r =111 ciss porpy e o s psr) st [31] ¥ 17)
(%6)%0%‘3%%;%1 131211 (%,—%)% (32) » (36)
(36) of33Hy; (51212 (%) — (3%} (%)
(38)F of3lis; 131214 (39)} — ()t — (35t |
(7-37)
P =[4] P =11
B ot = oy D0 N eyt =g,
5E)* of3)3; . = [5]; 1 [4] 2; [41]/° V57 TILEES A [15]; 5 [14] 1; [213]
(%) of3ih; 512 = < ®) P > (%)%0{5%3%5;[15” :< 3 Z 4 5 >
[41]; 2[4]1;[5] [21];1[1]5 [1°]
pr=131] v =211
3 (15)§P56 30 %Pse
(—9“) 0{41]2 3211 = [41]; 1[31]2; [32] (%5 ) 0[213]9 22114 = <[213] 4 [212] 2; [221]
, 3tp 3% Py
(%&)QOE%%I;HI]Z = <[32] -9 [31361 [41] (2_9 ) 0{22114 [21%12 — <[221] 2 [212] 4 [213]
36)% (%" §P56 (38)1 311 — (lzf’“)l Pyg
(1 ) ot 41]3 (31211 — [41] 1 [31] 3 [312] 10) Or21011; 131214 [213] 4 [212] 1: [312]
L a1 2P L P
(%)7 O{g%z]l [4113 — <[31]2 3 [31]561 [41] (%)20[3%214 [21%11 — <[312] I(E%IZ]SZ [213]
X 37P L 3tP.
(%—g—')f 0%%%]%;[312]2 - <[32] 2 [31] 3 [312] (%%)gg%g 11]]1 [31212 — [221] 2 [2125:7 1: [312]>>
5\ p NP,
(49 oo = (a2, 3 o1 o) (segys (B BB = (gpeg, 1 o, 2oy

(7-39)
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 51
p =12
(39 oli3H, o :< 2 By, ;o (39)F o33 :< 2! Py
1 [3213; 22111 [32] ; 1 [22] 3; [221] ) 16 [22111; (3213 [221]; 3 [22] 1; [32] .
(7-40)

From the last equation we read, for example, that

30\3 3211 _ pl221] 321 .
(16)”121231;121123 = 0712123;11223 Q%Pse 011221; 121125 (7 41)

whilst from (7-36) we read

(%Q)% 0[13&2112]31; 112321 = (%%)% 0[122211%3; 11232 (%)% 0[122211%3; 11223 2t Py 0[121221%3; 11232
+(38)F 03 s, 12132 3* Prg 0312, 11230 (7-42)
136 134 126
Here 121231 = (24 |, 121123 =(25 |, 112321 =35 |, (7-43)
5 6 4

are three of the 16 possible Yamanouchi symbols, or standard arrangements, for the repre-
sentation R132! of S; and the above are just two examples of the 162 = 256 Young operators
for RB2U_ all of which may be deduced from appropriate entries in the above tables (viz.
since f13% = f121) — 5 we obtain 50 of these operators from (7-36), since f©!" = 6 we
obtain 36 of the operators from (7-37), similarly 120 from (7-39) and finally 50 from (7-40):
total 256).

CoNCLUSIONS

Young operator expansions of the type considered here have been considered implicitly
by Hassitt (1955) in connexion with fractional parentage coefficient theory, but the ex-
plicit general expressions obtained here are new. This work has been extended to the case
of the alternative representation form (useful in physical applications) in which P, ,,, is
represented by a diagonal matrix; this will be treated in part II. In the appendix to the
present paper explicit formulae are given for the general case.
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APPENDIX. GENERAL EXPLICIT FORMULAE

Since the completion of the work described in the body of this paper, explicit expressions
for the coeflicients cf, ¢4 have been obtained directly in terms of Young axial distances.
These new formulae may be regarded as a generalization of the explicit formulae obtained
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in the Wigner supermultiplet case to the case of the most general representation of the
symmetric group and were in fact obtained in a similar manner through use of the general
dimension formula. Alternatively, the Wigner supermultiplet case results may be obtained
simply by specialization from these general formulae.

As before we let
p =T (p2).. ()] (A1)
denote a regular partition of 4 with possible repetitions
A =k pO+k,p@+ .+, p», (A2)

with PO>pD > >0 k=1, k=1, .,k >1. (A3)

n

(The considerations of §7 show, however, that some of the £, could be zero.) To this
partition corresponds a regular Young tableau of 4 squares. Any square of this tableau
which may be removed to leave a regular tableau of 4—1 squares is called an s-labelled
square for p and denoted by {p},, with s taking on the z values

S, =k +kyt...+k (r=1,2,..,n)
= the tableau row number of the square {},. (A4)
Any square which may be added to the tableau of p to form a regular tableau with 441
squares is called a ¢-labelled square for p and denoted by { p}, with ¢ taking on the n- 1 values

tq:k0+kl+k2+"'+kq (q:0,1,2,...,7’l; kozl)

= the tableau row number of the square {p}. (A5)
We let af, denote the Young axial distance (positive horizontally to the left or vertically
downwards) from square {p} to square {p},. (This is a change in notation from the body
of the paper: note the reversed order of the indices # and s.) Similarly we let &4 denote
the Young axial distance from square {p}' to square {p}* and b4, the axial distance from

{p}, to {p},,. (b and d are used here instead of a to avoid confusion when numerical values
for the row numbers are inserted.) We note as before that

af =1 for t=s, (A 6)

for {p} is then adjacent to {p}, on the same row. It is convenient to introduce the purely

formal conventions
df, =1 for t=1¢; bby=1 for s=y. (A7)

In terms of these axial distances, or their moduli, the new formulae (using the above
conventions) are as follows

Tt
b = L/PH(A-+1) /7] = ,\/ {ﬁm i (A8)

7

b oy [T
e gii = et a7 o
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HASSITT-TYPE YOUNG OPERATOR EXPANSIONS. I 53
. (1 i <y,
where {signaf} = :_ LA t>s (A10)

(Note that the cancellation of the factor 1/af, in the formula for ¢/, is now apparent: ./|af|
is a factor of both ¢£, and 1/ct/.)

We have thus proved, in the body of the paper, that the coefficients (A 8) and (A 9) set
up in the form of an (rn+-1)-rowed square array

c{)’t] ‘
o (A11)

form an orthogonal matrix.
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